Development of a Model for Restructuring of Fractal Soot Aggregates and its Parameterization using AFM Experiments

Egor Demidov^{*}, Ali Hasani, Alexei Khalizov, Gennady Gor

January 20, 2024

Table of contents

Background

2 Discrete element method / particle dynamics

3 Parametrization

④ Supplemental

5 Bibliography

⁰Renyi Zhang et al. "Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing". In: *Proceedings of the National Academy of Sciences* 105.30 (2008), pp. 10291–10296

Demidov, E. (NJIT)

Soot is a fractal-like agglomerate of carbon particles

Demidov, E. (NJIT)

We can represent it as an agglomerate of rigid spherical particles

Demidov, E. (NJIT)

Condensation drives restructuring of agglomerates (the agglomerate rearranges due to forces exerted by the liquid)

Supplemental: animations

Table of contents

2 Discrete element method / particle dynamics

3 Parametrization

④ Supplementa

5 Bibliography

Particle dynamics

- We model restructuring by
 - Calculating the forces acting on every particle
 - Integrating 2nd Law

Particle dynamics

$$m\frac{d^2\mathbf{x}}{dt^2} = \sum_i \mathbf{f}_i$$
$$l\frac{d^2\theta}{dt^2} = \sum_i \mathbf{\tau}_i$$

Demidov, E. (NJIT)

Particle dynamics

$$m\frac{d^2\mathbf{x}}{dt^2} = \sum_i \mathbf{f}_i$$

$$I\frac{d^2\theta}{dt^2}=\sum_i \tau_i$$

- Unlike in molecular dynamics
 - Particles (atoms) are not point-masses
 - Particles have nonzero moment of inertia and undergo rotational motion
 - Frictional forces between contacting particles need to be considered

Contact plane between particles i and j is defined by normal vector \mathbf{n}_{ij} connecting centers of respective particles

Contact will result in particle *i* experiencing force $\mathbf{f}_{c,ij}$ and particle *j* experiencing an equal in magnitude and opposite force $\mathbf{f}_{c,ji} = -\mathbf{f}_{c,ij}$ applied at the contact point

Contact force \mathbf{f}_c can be decomposed into normal and tangential components $f_{c,n}$ and $f_{c,t}$, where $f_{c,n}$ is related to elasticity and $f_{c,t}$ is related to friction:

$$\mathbf{f}_c = f_{c,n}\mathbf{n} + f_{c,t}\mathbf{t}$$

* τ_c is directed out-of-plane

Since the contact force is applied to the contact point, it will result in a torque:

$$\mathbf{\tau}_{c} = \mathbf{r}_{c} \times \mathbf{f}_{c} = f_{c,t} \left(\mathbf{r}_{c} \times \mathbf{t} \right)$$

Recap:

- Contact forces are expressed in terms of elasticity and friction coefficients
- They only act on free particles that come into contact
- Various models exist, including ones that simulate energy dissipation

Supplemental: animations Supplemental: Luding 2008

Radicals to the rescue

Molecules such as cyclopentadiene (bottom) can form radicals that undergo chain reactions and build up large RSRs (middle) and ultimately fractal clusters of these larger molecules (top).

Demidov, E. (NJIT)

Three (2D) / five (3D) springs are inserted between sintered particles

Translation / rotation of one particle gives rise to forces that restore the reference configuration of the pair

Numerical implementation:

Motion of a spring connector \mathbf{s} attached to particle *i* with center at \mathbf{x} :

$$rac{d\mathbf{s}}{dt} = \mathbf{v}_i + \mathbf{\omega}_i imes (\mathbf{s} - \mathbf{x}_i)$$

Spring displacement, force, and torque:

$$\Delta l = \|\mathbf{s}_i - \mathbf{s}_j\| - l_0$$
$$\mathbf{f}_n = -k_n \Delta l \frac{\mathbf{s}_i - \mathbf{s}_j}{\|\mathbf{s}_i - \mathbf{s}_j\|}$$
$$\mathbf{\tau}_n = \mathbf{r}_n \times \mathbf{f}_n$$

Breaking criterion:

Potential energy stored in a neck - sum of PEs stored in constituent springs:

$$E_{
m neck} = \sum E_{
m spring}$$

$$E_{\rm spring} = \frac{1}{2} k_n \left(l - l_0 \right)^2$$

Let us break the neck when

$$E_{
m neck} \ge E_{
m crit}$$

where $E_{\rm crit}$ is an attribute of the neck and is assigned at its creation $\mbox{Supplemental: animations}$

Non-contact / body forces

Hamaker (Van der Waals) attraction:

$$\mathbf{f}_{VdW} = \frac{2AR}{(\|\mathbf{x}_i - \mathbf{x}_j\| - 2R)^2} \mathbf{n}$$

if $\|\mathbf{x}_i - \mathbf{x}_j\| - 2R > h_0$

 $\mathbf{f}_{VdW} = \frac{2AR}{h_0^2}\mathbf{n}$

if $\|\mathbf{x}_i - \mathbf{x}_i\| - 2R \leq h_0$

Coating forces: to be implemented

Table of contents

Background

2 Discrete element method / particle dynamics

5 Bibliography

Mechanics only simulations

Before coating is implemented, AFM experiments¹ and TEM tomography can be used to parametrize the model:

¹Khalizov and Hasani, AAAR 2023

Demidov, E. (NJIT)

Mechanics only simulations

Mechanics only simulations

Adding capillary forces to the DEM model

Proposed model - interface force:

Table of contents

1 Background

2 Discrete element method / particle dynamics

3 Parametrization

5 Bibliography

Animations

- Contact forces (Luding 2008)
 - No resistance
 - Rolling resistance
 - Torsion resistance
- Necks
 - Trimer
 - Y-shape
 - Aggregate (central force)

Return: soot and its morphology

Return: contact forces

Return: sinter bridges

Return: mechanics only simulations

Luding 2008¹ contact model

Normal force, friction, rolling and torsion resistance

Return: contact forces

¹Stefan Luding. "Cohesive, frictional powders: contact models for tension". In: *Granular matter* 10.4 (2008), pp. 235–246

Demidov, E. (NJIT)

Cantilever dynamics:

$$m\frac{d^2x}{dt^2} + \gamma\frac{dx}{dt} + kx = g(t)$$

where x is cantilever displacement and g(t) is the forcing function on the cantilever.

Apparent force f(t):

$$f(t) = kx(t)$$
$$\frac{m}{k}\frac{d^2f}{dt^2} + \frac{\gamma}{k}\frac{df}{dt} + f(t) = g(t)$$

AFM transfer function

For a critically damped cantilever:

$$\gamma = 2\sqrt{mk}$$

Transfer function becomes:

$$\frac{F(s)}{G(s)} = \frac{\omega_0^2}{(s+\omega_0)^2}$$

Where ω_0 is the natural angular frequency of the undamped system:

$$\omega_0 = \sqrt{\frac{k}{m}}$$

AFM transfer function

Response to step input (Heaviside step function):

$$f(t)=arphi\left(1-e^{-\omega_{0}t}\left(\omega_{0}t+1
ight)
ight)$$

Demidov, E. (NJIT)

AFM transfer function

Response to unit impulse (Dirac delta function):

$$f(t)=arphi\omega_0^2e^{-\omega_0(t)}$$

Demidov, E. (NJIT)

Table of contents

Background

2 Discrete element method / particle dynamics

3 Parametrization

④ Supplemental

5 Bibliography

Bibliography I

- Luding, Stefan. "Cohesive, frictional powders: contact models for tension". In: *Granular matter* 10.4 (2008), pp. 235–246.
- Zhang, Renyi et al. "Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing". In: Proceedings of the National Academy of Sciences 105.30 (2008), pp. 10291–10296.