# Retrieval of the fractal parameters of individual soot aggregates

Egor Demidov<sup>\*1</sup>, Laurence Lu<sup>2</sup>, Divjyot Singh<sup>3</sup>, Alexei Khalizov<sup>4</sup>

<sup>1</sup>Chemical and Materials Engineering Department, NJIT
 <sup>2</sup>Bergen County Technical High School, Teterboro, NJ; now at UC Berkeley
 <sup>3</sup>Department of Physics, NJIT; now at Los Alamos National Laboratory, DOE
 <sup>4</sup>Chemistry and Environmental Science Department, NJIT

January 2023

Demidov, E. (NJIT)

Retrieval of the fractal parameters

January 2023

## Complex morphology of soot particles

- Carbon soot is released into the atmosphere upon incomplete combustion of fossil fuels
- Soot affects the climate through scattering and absorption of sunlight
- Soot aggregates restructure as they acquire coatings in the atmosphere
- Morphology of aggregates affects their scattering and absorption properties



#### Characterization of soot morphology

- Aggregate morphology is characterized using fractal law, where N is the number of primaries,  $R_g$  is the radius of gyration,  $k_0$  is pre-factor, and  $D_f$  is fractal dimension
- $D_f$  directly relates to degree of restructuring of an aggregate
- There are several popular methods for calculation of fractal parameters of aggregates, including box count and ensemble

$$N = k_0 \left(\frac{R_g}{a}\right)^{D_f}$$

#### Key takeaway

There are two unknown variables  $k_0$  and  $D_f$ , which makes the calculation non-trivial

#### Box count method

Is used for fractal analysis of soot images (2D). It involves covering the aggregate's projection with grids of increasing caliber (box size a)

$$C = k_0 a^{-D}$$





#### Key takeaway

Box count method is not representative of real 3D aggregates

Demidov, E. (NJIT)

Retrieval of the fractal parameters

January 2023

4/16

#### Ensemble method

Requires identifying the projected area of a monomer and the projected area of the aggregate

$$N = k_a \left(\frac{A_a}{A_p}\right)^{\alpha}$$

$$\frac{L_{max}}{2R_g} = 1.50$$

$$N = k_0 \left(\frac{R_g}{a}\right)^{D_f}$$

1000

#### Key takeaway

Ensemble method cannot be used on a single aggregate

Demidov, E. (NJIT)

→ ∃ →

- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both *D<sub>f</sub>* and *k*<sub>0</sub> change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



- Our group has been working on modeling the restructuring process of soot
- To track how the system evolves over time, it is necessary to calculate D<sub>f</sub> and k<sub>0</sub> of the aggregate at any point
- Both  $D_f$  and  $k_0$  change as the aggregate collapses



## Objective and approach

- Objective: derive  $D_f$  and  $k_0$  of aggregates of known 3D geometry
- <u>Hypothesis</u>: since aggregates are self-repeating structures, fractal parameters can be estimated by extracting multiple sub-aggregates and performing a linear regression of log N vs log  $\frac{R_g}{a}$
- Approach: we generate aggregates with a cluster-cluster agglomeration algorithm and determine the optimal way of sampling sub-aggregates to retrieve  $D_f$  and  $k_0$  with the greatest accuracy

#### Key takeaway

Our approach is to use ensemble method with sub-aggregates instead of a collection of different aggregates

## Methodology

- After an aggregate is generated, a neighbor search is performed on each node to build a topological graph
- To extract a sub-aggregate, a starting node is picked in the aggregate and a sub-aggregate is selected around that starting node
- Radius of gyration of each sub-aggregate is calculated



Aggregate in green (N = 500,  $k_0 = 1.4$ ,  $D_f = 1.8$ ) and sub-aggregate in red (N = 50)

January 2023

< □ > < □ > < □ > < □ > < □ > < □ >

# Methodology (continued)



Two sub-aggregates of size N = 50 extracted from an aggregate at different locations

イロト イポト イヨト イヨト

# Methodology (continued)



Two sub-aggregates of different sizes (N = 50 and N = 100) originating at the same point

Demidov, E. (NJIT)

Retrieval of the fractal parameters

January 2023

< □ > < 同 > < 回 > < 回 > < 回 >

#### Lacey aggregate analysis

| Generated aggregate parameters: |                |                |  |
|---------------------------------|----------------|----------------|--|
| $D_f = 1.80, \; k_0 = 1.40$     |                |                |  |
| Range                           | D <sub>f</sub> | k <sub>0</sub> |  |
| $10 \le N \le 500$              | 1.77           | 1.63           |  |
| $50 \le N \le 500$              | 1.70           | 2.00           |  |
| $100 \le N \le 500$             | 1.60           | 2.75           |  |
| $200 \le N \le 500$             | 1.35           | 5.81           |  |
| $400 \le N \le 500$             | 1.07           | 14.87          |  |
| $10 \le N \le 450$              | 1.79           | 1.57           |  |
| $10 \le N \le 400$              | 1.80           | 1.53           |  |
| $10 \le N \le 300$              | 1.77           | 1.63           |  |
| $10 \le N \le 100$              | 1.77           | 1.56           |  |
|                                 |                |                |  |

$$\log N = D_f \log \frac{R_g}{a} + \log k_0$$



Demidov, E. (NJIT)

Retrieval of the fractal parameters

January 2023

 $11 \, / \, 16$ 

#### Compact aggregate analysis

| $D_f = 2.50, \ k_0 = 1.40$ |                |            |  |
|----------------------------|----------------|------------|--|
| Range                      | D <sub>f</sub> | <i>k</i> 0 |  |
| $10 \le N \le 500$         | 2.59           | 0.92       |  |
| $50 \le N \le 500$         | 2.72           | 0.69       |  |
| $100 \le N \le 500$        | 3.09           | 0.30       |  |
| $200 \le N \le 500$        | 4.22           | 0.02       |  |
| $400 \le N \le 500$        | 3.09           | 0.34       |  |
| $10 \le N \le 450$         | 2.54           | 1.01       |  |
| $10 \le N \le 400$         | 2.46           | 1.14       |  |
| $10 \le N \le 300$         | 2.33           | 1.41       |  |
| $10 \le N \le 100$         | 2.22           | 1.63       |  |
| R                          |                |            |  |

nerated aggregate parameters:  

$$D_f = 2.50, \ k_0 = 1.40$$
  
Range  $D_f$  ko



 $\log N = D_f \log \frac{n_g}{a} + \log k_0$ 

Demidov, E. (NJIT)

Retrieval of the fractal parameters

January 2023

 $12 \, / \, 16$ 

#### Sampling statistics



#### Lacey aggregate

#### Compact aggregate

#### Key takeaway

Since larger sub-aggregates overlap more, they tend to bias the statistics

Demidov, E. (NJIT)

Retrieval of the fractal parameters

January 2023

∃ →

13/16

## Conclusion

- Accuracy of fractal parameter calculation varies based on random aggregate structure
- Using the broadest sub-aggregate size range seems to produce the best outcome
- Increasing the lower bound of the sub-aggregate size range seems to affect the results more than lowering the upper bound
- The algorithm produces reasonable results, which can be improved with further refinement of the algorithm

#### Key takeaway

Overall, we see the potential of this method to accurately calculate fractal parameters of individual aggregates

3

- Improve the sub-aggregate sampling algorithm to reduce the bias of larger sizes:
  - Random sampling (random starting node and sub-aggregate size)
  - Reduce the number of sub-aggregates as their size increases
- Collect statistics from a variety of aggregates with different fractal parameters
- Contain the algorithm in a single library for re-use in further studies

# Acknowledgement

#### Funding

- New Jersey Institute of Technology
- National Science Foundation (award #AGS-1554777)



#### Software

- Mackowski fractal generation program
- C/C++
  - libglfw
  - libglm
  - libglew
  - libtinyxml
- Python
  - matplotlib
  - numpy

< □ > < □ > < □ > < □ > < □ > < □ >

э