

Background

- Condensation is a major aging pathway for atmospheric aerosols
- Aging alters their climate forcing properties
- <u>Saturator + condenser</u> is a common laboratory technique for simulating condensational aerosol aging

Soot aggregate acquiring coating and restructuring

Project goal

- In a related project, we are studying experimentally condensation of different vapors on soot. Supersaturation is needed to calculate the amount of condensate.
- The goal of this project was to accurately predict how much material would condense on particles knowing saturator and condenser temperatures

Experimental setup

- Aerosol was generated, size-classified, passed through a saturator, condenser, and size was measured at different distances after the saturator
- An Electrostatic Particle Classifier (EPC) was initially installed immediately after the saturator. Then more and more tubing was added before the EPC to measure particle size as a function of distance

Aerosol growth measurement system

Predicting Supersaturation in a Laminar Flow

Egor Demidov, Alexei Khalizov. New Jersey Institute of Technology, Newark NJ

Modeling of particle growth

 Rate of growth of spherical particles depends on ambient vapor concentration and temperature (Seinfeld & Pandis, 2016)

$$\frac{dR_p}{dt} = \left(C - C_{s,Kelvin}\right)C_{FS}D_iM\frac{1}{\rho R_i}$$

Vapor concentration as a function of particle position in the condenser needs to be determined to calculate growth

1D model

- Chen et al., 2018 used a 1D model to calculate vapor concentration and supersaturation (ζ)
- The model is primed with wall and centerline temperatures and assumes vapor is distributed uniformly across the tube

Saturation ratio, oleic acid Particle diameter, 100 nm PSL

Failure of 1D model

- The 1D Model significantly overestimated particle growth and vapor supersaturation with water
 - Attempts were made to improve the model:
 - Delayed start time for growth with water vapor (to account for hydrophobicity of soot)
 - Latent heat released by condensing water
 - Changing flow velocity due to cooling and loss of mass
 - Possible reasons why closure between experiments and model wasn't attained:
 - The model relies on experimentally obtained gas temperature, which is hard to measure in a 5 mm ID tube
 - Temperature and concentration are not evenly distributed radially in a laminar flow

<-- R --►

Center Wal

Spatial

domain

2D model

• Heat conduction and mass diffusion are modelled by solving two partial differential equations: $\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = \alpha_t \nabla^2 T$

 $\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = D_i \nabla^2 C$

- The model is primed with wall temperature. Saturated vapor near the wall is assumed.
- For steady-state, laminar flow in cylindrical coordinates:

 $\frac{\partial T}{\partial z} \left[1 - \frac{r^2}{R^2} \right] U = \alpha_t \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \\ \frac{\partial C}{\partial z} \left[1 - \frac{r^2}{R^2} \right] U = D_i \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right)$

Finite element method was used to solve the PDEs

Model verification

- The model has been verified against Hering & Stolzenburg, 2005
- The slight mismatch between absolute values was likely caused by the authors using a different Antoine equation (not reported in the paper)

Modeled supersaturation

What determines the difference in supersaturation location?

Behavior of supersaturation depends on Lewis number (*Le*)

 $Le = \frac{\alpha_T}{D_i}$ $\alpha_T = \frac{k}{\alpha_{C_T}} \text{ (thermal diffusivity)}$

 Lewis number depends on condensing material and diffusion medium (air in our case)

Triethylene Glycol ($Le>1$)	Water ($Le < 1$)
Supersaturation is higher	Supersaturation is lower
Supersaturation occurs mostly at <u>hot \rightarrow cold</u> transition	Supersaturation occurs mostly at cold \rightarrow hot transition

Modeled vs. measured particle growth

- Growth was calculated assuming even mass distribution over equal-width concentric shells and non-mixing layers
- Let N be the total number of shells

 $D = \frac{1}{N^2} \sum_{n=1}^{N} D_n (2n-1)$

• *D* is the mean particle diameter at position *z*

Sample growth curve, 240 nm soot, water

