Discrete element method model for restructuring of soot aggregates

Egor Demidov^{*}, Gennady Gor, Alexei Khalizov

June 6, 2024

Demidov, E. (NJIT)

Formation of soot

Radicals to the rescue

Molecules such as cyclopentadiene (bottom) can form radicals that undergo chain reactions and build up large RSRs (middle) and ultimately fractal clusters of these larger molecules (top).

Demidov, E. (NJIT)

DEM model for soot restructuring

Climate impact of soot

• Soot (black carbon) is a major contributor to climate change

^aIPCC. Climate Change 2021: The Physical Science Basis. 2021. Chap. 6.4: SLCF Radiative Forcing and Climate Effects

Demidov, E. (NJIT)

Climate impact of soot

- Soot (black carbon) is a major contributor to climate change
- Uncertainty in climate forcing by soot remains large

^aIPCC, Climate Change 2021: The Physical Science Basis

Climate impact of soot

^aIPCC, Climate Change 2021: The Physical Science Basis

- Soot (black carbon) is a major contributor to climate change
- Uncertainty in climate forcing by soot remains large
- Determination of climate forcing by soot is complicated by:
 - Complex morphology of soot particles
 - Transformations that soot particles undergo in the atmosphere

Morphology and composition of soot particles

Representation of soot in a simulation

Newton's equations of motion

$$\mathbf{f} = m\mathbf{a} = m\frac{d^2\mathbf{x}}{dt^2}$$
$$\mathbf{\tau} = I\boldsymbol{\alpha} = I\frac{d^2\boldsymbol{\theta}}{dt^2}$$

Demidov, E. (NJIT)

Problem statement

Rotational degrees of freedom

In a system of N particles, acceleration of particle i:

$$\mathbf{a}_i = rac{1}{m} \left[\mathbf{F}_{i,\mathrm{u}} + \sum_{j=1}^{N} \mathbf{F}_{ij,\mathrm{b}}
ight]$$

In a system of N particles, acceleration of particle i:

$$\mathbf{a}_{i} = \frac{1}{m} \left[\underbrace{\mathbf{F}_{i,\mathrm{u}}}_{\text{field force}} + \underbrace{\sum_{j=1}^{N} \mathbf{F}_{ij,\mathrm{b}}}_{\text{binary force}} \right]$$

<u>Field force:</u> gravity, electric field, viscous drag, *etc.* Binary force: friction, elasticity, van der Waals attraction, *etc.*

Discrete element method

In a system of N particles, acceleration of particle i:

$$\mathbf{a}_i = rac{1}{m} \left[\mathbf{F}_{i,\mathrm{u}} + \sum_{j=1}^{N} \mathbf{F}_{ij,\mathrm{b}}
ight]$$

Also, inter-particle friction can result in rotation:

$$lpha_i = rac{1}{I}\sum_{j=1}^N au_{ij}$$

Remark

A multi-body problem is approximated as a system of two-body problems

Types of contacts in a soot aggregate

Degrees of freedom in a pair

Normal degrees of freedom

Tangential degrees of freedom

Demidov, E. (NJIT)

DEM model for soot restructuring

AFM spectroscopy experiments as a parametrization tool

elasticity / friction (particle-plane)

VdW attraction

VdW attraction (particle-plane)

MANNAN MA

neck (chemical bonding)

DEM model for soot restructuring

AFM retraction (force-displacement) curves

elasticity / friction

VdW attraction

neck (chemical bonding)

capillarity

Demidov, E. (NJIT)

DEM model for soot restructuring

Restructuring primary particle displacement curves

Conclusions & future work

Conclusions:

- Developed a DEM contact model
- The model can reproduce AFM spectroscopy experiments
- Restructuring simulations qualitatively behave as expected from experiments

Conclusions & future work

Conclusions:

- Developed a DEM contact model
- The model can reproduce AFM spectroscopy experiments
- Restructuring simulations qualitatively behave as expected from experiments

Future work:

- Parametrize the restructuring simulations based on experiments
- Develop a parametrization for soot restructuring in large-scale aerosol models based on simulations
- Apply the DEM model to simulation of industrial carbon blacks

Acknowledgement

- Ali Hasani for experimental AFM data
- Ashoka Tholangamuwe Gedara for annotated force-displacement curve
- U.S. NSF award #AGS-2222104

