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Background

• Condensation is a major aging pathway for atmospheric aerosols

• Aging alters their climate forcing properties

• Saturator + condenser is a common laboratory technique for 
simulating condensational aerosol aging

Soot aggregate acquiring coating and restructuring
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Project Goal

• In a related project, we are studying experimentally condensation of different 
vapors on soot. Supersaturation is needed to calculate the amount of 
condensate.

• The goal of this project was to accurately predict how much material would 
condense on particles knowing saturator and condenser temperatures

• The objectives were:

• Design an experiment for measuring particle growth

• Solve mass and heat balances for vapor concentration and temperature as a function of 
position

• Calculate particle growth

• Compare experimental and modeled results
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Experimental Setup

• Aerosol was generated, size-classified, passed through a saturator, condenser, 
and size was measured at different distances after the saturator

• An Electrostatic Particle Classifier (EPC) was initially installed immediately after 
the saturator. Then more and more tubing was added before the EPC to measure 
particle size as a function of distance
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Modeling of Particle Growth

• Rate of growth of spherical particles depends on ambient vapor 
concentration and temperature (Seinfeld & Pandis, 2016)

𝑑𝑅𝑝
𝑑𝑡

= 𝐶 − 𝐶𝑠,𝐾𝑒𝑙𝑣𝑖𝑛 𝐶𝐹𝑆𝐷𝑖𝑀
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𝜌𝑅𝑝

Where 𝐶 is ambient vapor concentration, 𝐶𝑠,𝐾𝑒𝑙𝑣𝑖𝑛 is Kelvin-corrected vapor concentration near 
the surface of a particle, 𝐶𝐹𝑆 is a transition correction factor of choice (Fuchs & Sutugin, 1971 
used here), 𝐷𝑖 is diffusivity, 𝑀 is molar mass of condensing material, 𝜌 is density of condensing 
material, and 𝑅𝑝 is particle radius

• Vapor concentration as a function of particle position in the 
condenser needs to be determined to calculate growth
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1D Model

• Chen et al., 2018 used a 1D 
model to calculate vapor 
concentration and 
supersaturation (𝜁)

• The model is primed with wall 
and centerline temperatures and 
assumes vapor is distributed 
uniformly across the tube 

6Hanson, D. R., & Eisele, F. (2000). Diffusion of H2SO4 in Humidified 
Nitrogen: Hydrated H2SO4.

Saturation ratio, oleic acid

Particle diameter, 100 nm PSL

Experimental 
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Chen, C., Enekwizu, O. Y., Fan, X., Dobrzanski, C. D., Ivanova, E. V., Ma, Y., 
Gor, G. Y., & Khalizov, A. F. (2018). Single Parameter for Predicting the 
Morphology of Atmospheric Black Carbon.

𝑑𝐶

𝑑𝑡
= −4𝜋𝑛𝑅𝑝𝐷𝑖𝐶𝐹𝑆 𝐶 − 𝐶𝑠,𝐾𝑒𝑙𝑣𝑖𝑛 − 𝑘𝑑(𝐶 − 𝐶𝑤𝑎𝑙𝑙)

 

𝑘𝑑 =
3.65𝐷𝑖
𝑅2



Failure of 1D Model
• The 1D Model significantly overestimated 

particle growth and vapor
supersaturation with water

• Attempts were made to improve the 
model:
• Delayed start time for growth with water 

vapor (to account for hydrophobicity of soot) 

• Latent heat released by condensing water

• Changing flow velocity due to cooling and 
loss of mass

• Possible reasons why closure between 
experiments and model wasn’t attained:
• The model relies on experimentally obtained 

gas temperature, which is hard to measure in 
a 5 mm ID tube

• Temperature and concentration are not 
evenly distributed radially in a laminar flow
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Water condensing on 240 nm 

soot, saturator at 80°C



2D Model
• Heat conduction and mass diffusion are modelled by 

solving two partial differential equations:
𝜕𝑇

𝜕𝑡
+ Ԧ𝑣 ⋅ 𝛻T = 𝛼𝑡𝛻

2𝑇

𝜕𝐶

𝜕𝑡
+ Ԧ𝑣 ⋅ 𝛻𝐶 = 𝐷𝑖𝛻

2𝐶

• The model is primed with wall temperature. Saturated 
vapor near the wall is assumed.

• For steady-state, laminar flow in cylindrical coordinates:
𝜕𝑇

𝜕𝑧
1 −
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• Finite element method was used to solve the PDEs
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Model verification
• The model has been verified against Hering & Stolzenburg, 2005

• The slight mismatch between absolute values was likely caused by the authors 
using a different Antoine equation (not reported in the paper)
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Cold-to-hot transition Hot-to-cold transition

Hering, S. V., & Stolzenburg, M. R. (2005). A Method for Particle Size Amplification by Water Condensation in a Laminar, Thermally 
Diffusive Flow. Aerosol Science and Technology, 39(5), 428–436. https://doi.org/10.1080/027868290953416 
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Modeled Supersaturation
𝑆𝑆 =

𝐶𝑅𝑔𝑇

𝑃𝑠𝑎𝑡(𝑇)
− 1

Supersaturation

(a) (b) (c) (d)

Water

hot → cold

(exit)
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What determines the difference in 
supersaturation location?
• Behavior of supersaturation depends on Lewis number (𝐿𝑒)

𝐿𝑒 =
𝛼𝑡

𝐷𝑖

𝛼𝑡 =
𝑘

𝜌𝐶𝑝
(thermal diffusivity)

• Lewis number depends on condensing material and diffusion medium 
(air in our case)

Triethylene Glycol (𝑳𝒆 > 𝟏) Water (𝑳𝒆 < 𝟏)

Supersaturation is higher Supersaturation is lower

Supersaturation occurs mostly at hot →
cold transition

Supersaturation occurs mostly at cold →
hot transition
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Modeled vs. Measured Particle Growth

• Growth was calculated assuming even mass 
distribution over equal-width concentric shells 
and non-mixing layers

• Let 𝑁 be the total number of shells

𝐷 =
1

𝑁2
෍

𝑛=1

𝑁

𝐷𝑛 2𝑛 − 1

• 𝐷 is the mean particle diameter at position 𝑧 12

Ԧ𝑣𝑧

Thin shell

Sample growth curve, 240 

nm soot, water



Conclusions

• Any laboratory aging setup will contain both transitions: 
cold → hot → cold

• However, both transitions need not be considered in most cases –
one of them is usually insignificant

• Transition with the highest impact can be determined by calculating a 
single parameter - 𝐿𝑒

• In this study, the amount of condensate was calculated and was close 
to experimental results
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Future work

• Existing saturator contains areas where temperature is poorly defined

• A new growth tube is being built

• Will explore condensation of three fluids (DOS, TEG, water)
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