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Background

* Condensation is a major aging pathway for atmospheric aerosols
* Aging alters their climate forcing properties

e Saturator + condenser is a common laboratory technique for
simulating condensational aerosol aging
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Project Goal

* |In a related project, we are studying experimentally condensation of different
vapors on soot. Supersaturation is needed to calculate the amount of
condensate.

* The goal of this project was to accurately predict how much material would
condense on particles knowing saturator and condenser temperatures

* The objectives were:
* Design an experiment for measuring particle growth
* Solve mass and heat balances for vapor concentration and temperature as a function of
position
* Calculate particle growth

* Compare experimental and modeled results



Experimental Setup

* Aerosol was generated, size-classified, passed through a saturator, condenser,
and size was measured at different distances after the saturator

* An Electrostatic Particle Classifier (EPC) was initially installed immediately after
the saturator. Then more and more tubing was added before the EPC to measure

particle size as a function of distance
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Modeling of Particle Growth

e Rate of growth of spherical particles depends on ambient vapor
concentration and temperature (Seinfeld & Pandis, 2016)

dRp 1
F — (C — Cs,Kelvin )CFSDL'ME

Where C is ambient vapor concentration, Cg geiin is Kelvin-corrected vapor concentration near
the surface of a particle, Crs is a transition correction factor of choice (Fuchs & Sutugin, 1971

used here), D; is diffusivity, M is molar mass of condensing material, p is density of condensing
material, and R,, is particle radius

* Vapor concentration as a function of particle position in the
condenser needs to be determined to calculate growth

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
Fuchs, N. A., & Sutugin, A. G. (1971). HIGH-DISPERSED AEROSOLS. In G. M. Hidy & J. R. Brock (Eds.), Topics in Current Aerosol Research (p. 1). Pergamon
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Failure of 1D Model

 The 1D Model significantly overestimated
particle growth and vapor
supersaturation with water

Diameter vs. distance

* Attempts were made to improve the 7000 {
model: 6000 -

* Delayed start time for growth with water
vapor (to account for hydrophobicity of soot)
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* Latent heat released by condensing water E ]

* Changing flow velocity due to cooling and 30007

loss of mass 2000

e Possible reasons why closure between 1000 -
experiments and model wasn’t attained: b
 The model relies on experimentally obtained °

gas temperature, which is hard to measure in
a5 mm ID tube

* Temperature and concentration are not
evenly distributed radially in a laminar flow
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2D Model

* Heat conduction and mass diffusion are modelled by
solving two partial differential equations: .

M 4L 3. VT = ,? \
o+ T VT = V2T :

4+ 7C =DvC

* The model is primed with wall temperature. Saturated
vapor near the wall is assumed.
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* Finite element method was used to solve the PDEs



Model verification

 The model has been verified against Hering & Stolzenburg, 2005

* The slight mismatch between absolute values was likely caused by the authors
using a different Antoine equation (not reported in the paper)
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What determines the difference in
supersaturation location?

* Behavior of supersaturation depends on Lewis humber (Le)

Ay = K (thermal diffusivity)
PCp

* Lewis number depends on condensing material and diffusion medium
(air in our case)

Triethylene Glycol (Le > 1) Water (Le < 1)
Supersaturation is higher Supersaturation is lower
Supersaturation occurs mostly at hot 2 Supersaturation occurs mostly at cold 2

cold transition hot transition
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Modeled vs. Measured Particle Growth
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Conclusions

* Any laboratory aging setup will contain both transitions:
cold = hot = cold

* However, both transitions need not be considered in most cases —
one of them is usually insignificant

* Transition with the highest impact can be determined by calculating a
single parameter - Le

* In this study, the amount of condensate was calculated and was close
to experimental results



Future work

* Existing saturator contains areas where temperature is poorly defined
* A new growth tube is being built
* Will explore condensation of three fluids (DOS, TEG, water)
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